数值计算
三分(0.618法)
#define fai 0.618033988750
#define eps 1e-7
double l = minn, r = maxx;
double mid1 = l + (r - l) * (1 - fai), mid2 = l + (r - l) * fai;
while (r - l > eps) {
if (f(mid1) > f(mid2)) { //若函数f为先增后减的函数,则用>,反之则用<
r = mid2;
mid2 = mid1;
mid1 = l + (r - l) * (1 - fai);
} else {
l = mid1;
mid1 = mid2;
mid2 = l + (r - l) * fai;
}
}
//答案为l
牛顿迭代法(JAVA高精度开方)
public static BigInteger isqrtNewton(BigInteger n) {
BigInteger a = BigInteger.ONE.shiftLeft(n.bitLength() / 2);
boolean p_dec = false;
for (;;) {
BigInteger b = n.divide(a).add(a).shiftRight(1);
if (a.compareTo(b) == 0 || a.compareTo(b) < 0 && p_dec)
break;
p_dec = a.compareTo(b) > 0;
a = b;
}
return a;
}
自适应辛普森法(定积分)
double simpson(double l, double r) {
double mid = (l + r) / 2;
return (r - l) * (f(l) + 4 * f(mid) + f(r)) / 6; // 辛普森公式,f为原函数
}
double asr(double l, double r, double eqs, double ans, int step) {
double mid = (l + r) / 2;
double fl = simpson(l, mid), fr = simpson(mid, r);
if (abs(fl + fr - ans) <= 15 * eqs && step < 0)
return fl + fr + (fl + fr - ans) / 15; // 足够相似的话就直接返回
return asr(l, mid, eqs / 2, fl, step - 1) +
asr(mid, r, eqs / 2, fr, step - 1); // 否则分割成两段递归求解
}
double calc(double l, double r, double eps) {
return asr(l, r, eps, simpson(l, r), 12);
}
Comments NOTHING